Senin, 07 November 2016 0 komentar

CENTRAL PROCESSING UNIT

CENTRAL PROCESSING UNIT

Unit Pengolah Pusat (UPP) (CPU, singkatan dari Central Processing Unit), merujuk kepada perangkat keras komputer yang memahami dan melaksanakan perintah data dari perangkat lunak. Istilah lain, prosesor (pengolah data), yang sering disebut CPU. Adapun mikroprosesor adalah CPU yang diproduksi dalam sirkuit terpadu, seringkali dalam sebuah paket sirkuit terpadu tunggal. Sejak pertengahan tahun 1970-an, mikroprosesor sirkuit terpadu -tunggal ini, telah umum digunakan dan menjadi aspek penting dalam penerapan CPU.

Komponen CPU
v  Unit kontrol yang mampu mengatur jalannya program. Komponen ini sudah pasti terdapat dalam semua CPU.CPU bertugas mengontrol komputer sehingga terjadi sinkronisasi kerja antar komponen dalam menjalankan fungsi operasinya. termasuk dalam tanggung jawab, unit kontrol adalah mengambil intruksi dari memori utama dan menentukan jenis instruksi tersebut. Bila ada instruksi untuk perhitungan aritmatika atau perbandingan logika, maka unit kendali akan mengirim instruksi tersebut ke ALU. Hasil dari pengolahan data dibawa oleh unit kendali ke memori utama lagi untuk disimpan, dan pada saatnya akan disajikan ke alat output. Dengan demikian tugas dari unit kendali ini adalah:
·         Mengatur dan mengendalikan alat input dan output.
·         Mengambil instruksi dari memori utama.
·         Mengambil data dari memori utama (jika diperlukan) untuk diproses.
·         Mengirim instruksi ke ALU bila ada perhitungan aritmatika atau perbandingan logika serta mengawasi kerja dari ALU.
·         Menyimpan hasil proses ke memori utama.

v  Register
Merupakan alat penyimpanan kecil yang mempunyai kecepatan akses cukup tinggi, yang digunakan untuk menyimpan data dan/atau instruksi yang sedang diproses. Memori ini bersifat sementara, biasanya di gunakan untuk menyimpan data saat di olah ataupun data untuk pengolahan selanjutnya. Secara analogi, register ini dapat diibaratkan sebagai ingatan di otak bila kita melakukan pengolahan data secara manual, sehingga otak dapat diibaratkan sebagai CPU, yang berisi ingatan, satuan kendali yang mengatur seluruh kegiatan tubuh dan mempunyai tempat untuk melakukan perhitungan dan perbandingan logika.
v  ALU 
Unit yang bertugas untuk melakukan operasi aritmetika dan operasi logika berdasar instruksi yang ditentukan. ALU sering di sebut mesin bahasakarena bagian ini ALU terdiri dari dua bagian, yaitu unit arithmetika dan unit logika boolean yang masing memiliki spesifikasi tugas tersendiri. Tugas utama dari ALU adalah melakukan semua perhitungan aritmatika (matematika) yang terjadi sesuai dengan instruksi program. ALU melakukan semua operasi aritmatika dengan dasar penjumlahan sehingga sirkuit elektronik yang digunakan disebut adder.
Tugas lain dari ALU adalah melakukan keputusan dari suatu operasi logika sesuai dengan instruksi program. Operasi logika meliputi perbandingan dua operand dengan menggunakan operator logika tertentu, yaitu sama dengan (=), tidak sama dengan (¹ ), kurang dari (<), kurang atau sama dengan (£ ), lebih besar dari (>), dan lebih besar atau sama dengan (³ ).

·         CPU Interconnections 
Adalah sistem koneksi dan bus yang menghubungkan komponen internal CPU, yaitu ALU, unit kontrol dan register dan juga dengan bus-bus eksternal CPU yang menghubungkan dengan sistem lainnya, seperti memori utama, piranti masukan /keluaran.

Cara Kerja CPU
Saat data dan/atau instruksi dimasukkan ke processing-devices, pertama sekali diletakkan di RAM melalui (Input-storage); apabila berbentuk instruksi ditampung oleh Control Unit di Program-storage, namun apabila berbentuk data ditampung di (Working-storage). Jika register siap untuk menerima pengerjaan eksekusi, maka Control Unit akan mengambil instruksi dari Program-storage untuk ditampungkan ke Instruction Register, sedangkan alamat memori yang berisikan instruksi tersebut ditampung di Program Counter. Sedangkan data diambil oleh Control Unit dari Working-storage untuk ditampung di General-purpose register (dalam hal ini di Operand-register). Jika berdasar instruksi pengerjaan yang dilakukan adalah arithmatika dan logika, maka ALU akan mengambil alih operasi untuk mengerjakan berdasar instruksi yang ditetapkan. Hasilnya ditampung di Accumulator. Apabila hasil pengolahan telah selesai, maka Control Unit akan mengambil hasil pengolahan di Accumulator untuk ditampung kembali ke Working-storage. Jika pengerjaan keseluruhan telah selesai, maka Control Unit akan menjemput hasil pengolahan dari Working-storage untuk ditampung ke Output-storage. Lalu selanjutnya dari Output-storage, hasil pengolahan akan ditampilkan ke output-devices.

Fungsi CPU
Fungsi utama dari CPU adalah melakukan operasi aritmatika dan logika terhadap data yang diambil dari memori atau dari informasi yang dimasukkan melalui beberapa perangkat keras, seperti papan ketik, pemindai, tuas kontrol, maupun tetikus. CPU dikontrol menggunakan sekumpulan instruksi perangkat lunak komputer. Perangkat lunak tersebut dapat dijalankan oleh CPU dengan membacanya dari media penyimpan, seperti cakram keras, disket, cakram padat, maupun pita perekam. Instruksi tersebut kemudian disimpan terlebih dahulu pada memori fisik (RAM), yang mana setiap instruksi akan diberi alamat unik yang disebut alamat memori. Selanjutnya, CPU dapat mengakses data pada RAM dengan menentukan alamat data yang dikehendaki.
Saat sebuah program dieksekusi, data mengalir dari RAM ke sebuah unit yang disebut dengan bus, yang menghubungkan antara CPU dengan RAM. Data kemudian didekode dengan menggunakan unit proses yang disebut sebagai pendekoder instruksi yang sanggup menerjemahkan instruksi. Data kemudian berjalan ke unit aritmatika dan logika (ALU) yang melakukan kalkulasi dan perbandingan. Data bisa jadi disimpan sementara oleh ALU dalam sebuah lokasi memori yang disebut dengan register supaya dapat diambil kembali dengan cepat untuk diolah. ALU dapat melakukan operasi-operasi tertentu, meliputi penjumlahan, perkalian, pengurangan, pengujian kondisi terhadap data dalam register, hingga mengirimkan hasil pemrosesannya kembali ke memori fisik, media penyimpan, atau register apabila akan mengolah hasil pemrosesan lagi. Selama proses ini terjadi, sebuah unit dalam CPU yang disebut dengan penghitung program akan memantau instruksi yang sukses dijalankan supaya instruksi tersebut dapat dieksekusi dengan urutan yang benar dan sesuai.


JENIS – JENIS BUS
Sistem bus dalam arsitektur komputer merupakan bus yang digunakan oleh sistem komputer untuk menghubungkan semua komponennya untuk menjalankan tugasnya. Bus sendiri merupakan jalur yang di gunakan untuk mengalirkan data-data pada komputer yang dapat digunakan untuk komunikasi dan dapat dibuat antara dua elemen atau lebih.


Dalam hal ini, data maupun aplikasi yang ada pada memori dapat di eksekusi oleh CPU dengan menggunakan sistem bus.  Di dalam sebuah komputer tidak hanya memiliki satu bus saja, hal ini agar komputer dapat berjalan dengan baik. Banyaknya bus yang terdapat dalam sistem, tergantung dari arsitektur sistem komputer yang digunakan. Sebagai contoh, sebuah komputer PC dengan prosesor umumnya Intel Pentium 4 memiliki bus prosesor (Front-Side Bus), bus AGP, bus PCI,) bus USB, bus ISA (yang digunakan oleh keyboard dan mouse), dan bus-bus lainnya. Berikut ini bus utama dalam sistem komputer modern :


1.Bus Prosessor.
Disebut juga dengan front-side bus (FSB), merupakan bus tercepat pada komputer dan merupakan inti dari chipset (dan motherboard). Utamanya, bus ini di gunakan oleh mikroprosesor untuk melewatkan informasi ke / dari chache atau memori utama, dan juga ke chipset north-bridge. Bus prosessor pada komputer sekarang berjalan pada kecepatan 66MHz, 100MHz, 133MHz,atau 200Mhz menggunakan lebar jalur data 64 bit (8 byte).
2.Bus ISA
Bus 16-bit 8MHz. kecepatan ini sangat rendah namun cukup ideal untuk peripheral yang memang berkecepatan rendah, termasuk piranti lama. Untuk keperluan modem, sound-card, dan piranti berkecepatan rengdah lain bus ini masih mencukupi. Komputer generasi terakhir seperti Pentium 4 relatif tidak menyertakan bus / slot ini didalamnya. Pada chipset south-bridge terdapat controller yang bekerja sebagai bus ISA sekaligus interface dengan bus PCI diatasnya.Chip super I/O biasanya terhubung kepadanya , terutama pada sistem lama yang masih memiliki slot ISA. Bus lain bernama EISA hasil dari arsitektur Micro Channel IBM untuk kompatibel dengan PC. IBM Micro Channel Architecture (MCA) sendiri selesai dibuat pada tahun 1987 ketika mikroprosesor 80386 diluncurkan tahun 1985.
3.VESA (Video electronics Standards Association),
Dikenal sebagai VESA local bus atau VL bus. VL Bus versi 1.0 ialah bus 32 bit yang dapat bekerja hingga 33MHz.
4.Bus PCI
Bus 32-bit yang normalnya berjalan pada 33MHz. Komputer yang modern mendukung PCI 64-bit 66MHz. bus ini terdapat baik pada chipset north – bridge atau pada I/O controller hub. Disajikan di motherboard sebagai slot 32-bit yang umumnya berwarna putih sebanyak 3 dan 6 slot dan banyak digunakan oleh peripheral komputer yang membutuhkan kecepatan tinggi misalnya SCSI, kartu jaringan (Network Interface Card, NIC), dan lain-lain.

5. Bus AGP

Bus cepat 32 bit yang khusus untuk kartu grafis / video. Berjalan paada kecepatan 66MHz (AGP 1x),133MHz (AGP 2x), 266 MHz (AGP 4x), atau 533MHz (AGP 8x) yang akan menghasilkan bandwidth hingga sebesar 2,133MB/det. AGP di hubungkan ke north-bridge atau memori controller hub pada chipset dan konektornya pada motherboard yang diwujudkan dalam bentuk slot AGP pada system yang mendukungnya, umumnya berwarna coklat.

Berdasar jenis busnya,bus di bagi menjadi :
1. Merupakan bus yang khusus menyalurkan data tertentu, contohnya paket data saja, atau alamat saja, jenis ini disebut dedicated bus.
2. Merupakan bus yang dilalui informasi yang berbeda baik data, alamat, dan sinyal kontrol dengan metode multipleks data maka bus ini disebut multiplexed bus. Namun bus jenis ini memiliki kekurangan yaitu hanya memerlukan saluran sedikit sehingga menghemat tempat tapi kecepatan transfer data menurun dan diperlukan mekanisme yang komplek untuk
mengurai data yang telah dimultipleks.


Selasa, 25 Oktober 2016 0 komentar

ARSITEKTUR SET INSTRUKSI

Set Instruksi (bahasa Inggris: Instruction Set, atau Instruction Set Architecture (ISA)) didefinisikan sebagai suatu aspek dalam arsitektur komputer yang dapat dilihat oleh para pemrogram. Secara umum, ISA ini mencakup jenis data yang didukung, jenis instruksi yang dipakai, jenis register, mode pengalamatan, arsitektur memori, penanganan interupsi, eksepsi, dan operasi I/O eksternalnya (jika ada). ISA merupakan sebuah spesifikasi dari Pullman semua kode-kode biner (opcode) yang diimplementasikan dalam bentuk aslinya (native form) dalam sebuah desain prosesor tertentu. Kumpulan opcode tersebut, umumnya disebut sebagai bahasa mesin (machine language) untuk ISA yang bersangkutan. ISA yang populer digunakan adalah set instruksi untuk chip Intel x86, IA-64, IBM PowerPC, Motorola 68000, Sun SPARC, DEC Alpha, dan lain-lain.

Elemen - Elemen dari Set Instruksi
a. Operation Code (opcode) : menentukan operasi yang akan dilaksanakan.
b. Source Operand Reference : merupakan input bagi operasi yang akan dilaksanakan.
c. Result Operand Reference : merupakan hasil dari operasi yang dilaksanakan.
d. Next Instruction Reference : memberitahu CPU untuk mengambil instruksi berikutnya setelah instruksi yang dijalankan selesai.

Format Instruksi 
Suatu instruksi terdiri dari beberapa field yang sesuai dengan elemen dalam instruksi tersebut. Layout dari suatu instruksi sering disebut sebagai Format Instruksi.

Perbandingan Set Instruksi
Beberapa computer CISC (Complex Instruction Set Computer) menggunakan cara implist dalam menentukan mode addressing pada setiap set instruksinya. Penentuan mode addressing dengan cara implicit memiliki arti bahwa pada set instruksi tidak di ada bagian yang menyatakan tipe dari mode addressing yang digunakan, deklarasi dari mode addressing itu berada menyatu dengan opcode. Lain hal nya dengan cara imsplisit, cara eksplisit sengaja menyediakan tempat pada set instruksi untuk mendeklarasikan tipe mode addressing. Pada cara eksplisit deklarasi opcode dan mode addressing berada terpisah. Data pada tempat deklarasi mode addressing diperoleh dari logaritma basis dua jumlah mode addressing. Jika deklarasi mode addressing dilakukan secara implicit akan menghemat tempat dalam set instruksi paling tidak satu bit untuk IBM 3090 dan 6 bit untuk MC68040. Perubahan satu bit pada set instruksi akan memberikan jangkauan alamat memori lebih luas mengingat range memori dinyatakan oleh bilangan berpangkat dua.

Jenis - Jenis Instruksi
1. Data Processing / Pengolahan Data : instruksi-instruksi aritmetika dan logika. Instruksi aritmetika memiliki kemampuan untuk mengolahdata numeric, sedangkan instruksi logika beroperasi pada bit-bit word sebagai bit bukan sebagai bilangan. Operasi-operasi tersebut dilakukan terutama untuk data di register CPU.
2. Data Storage / Penyimpanan Data : instruksi-instruksi memori. Instruksi-instruksi memori diperlukan untuk memindah data yang terdapat di memori dan register.
3. Data Movement / Perpindahan Data : instruksi I/O. Instruksi-instruksi I/O diperlukan untuk memindahkan program dan data ke dalam memori dan mengembalikan hasil komputansi kepada pengguna.
4. Control / Kontrol : instruksi pemeriksaan dan percabangan. Instruksi-instruksi kontrol digunakan untuk memeriksa nilai data, status komputansi dan mencabangkan ke set instruksi lain.

Teknik Pengalamatan
Metode pengalamatan merupakan aspek dari set instruksi arsitektur disebagian unit pengolah pusat (CPU) desain yang didefinisikan dalam set instruksi arsitektur dan menentukan bagaimana bahasa mesin petunjuk dalam arsitektur untuk mengidentifikasi operan dari setiap instruksi. Sebuah mode pengalamatan menentukan bagaimana menghitung alamat memori yang efektif dari operand dengan menggunakan informasi yang diadakan di register dan / atau konstanta yang terkandung dalam instruksi mesin atau di tempat lain.


Jenis-jenis metode pengalamatan diantaranya :
1. Immediate Addressing Mode


Keuntungannnya adalah tidak adanya referensi memori selain dari instruksi yang diperlukan untuk memperoleh operand Menghemat siklus instruksi sehingga proses keseluruhan akan cepat, kekurangannya adalah ukuran bilangan dibatasi oleh ukuran field alamat.

2. Register Addressing Mode



3. Direct Addressing Mode


Kelebihan:
1.       Field alamat berisi efektif address sebuah operand
2.       Teknik ini banyak digunakan pada komputer lama dan komputer ecil
3.       Hanya memerlukan sebuah referensi memori dan tidak memerlukan kalkulus khusus
Kelemahan:
1.       Keterbatasan field alamat karena panjang field alamat biasanya lebih kecil dibandingkan panjang word Contoh: ADD A ; tambahkan isi pada lokasi alamat A ke akumulator

4. Indirect Addressing Mode


R0 atau R1 digunakan untuk menunjukkan Destination Address
MOV A,#30h   ; salin immediate data 30h ke Akumulator
MOV R0,#7Fh   ; salin immediate data 7Fh ke register R0
MOV @R0,A   ; salin the data in A ke alamat di R0

R0 atau R1 digunakan untuk menunjukkan Source Address
MOV R0,#7Fh   ; salin immediate data 7Fh ke register R0
MOV @R0,#30h  ; salin immediate data 30 ke alamat di R0
MOV A,@R0   ; salin isi dari alamat di R0 ke Akumulator


Desain Set Instruksi
Desain set instruksi merupakan masalah yang sangat komplek yang melibatkan banyak aspek, diantaranya :
1. Kelengkapan set instruksi
2. Ortogonalitas (sifat independensi instruksi)
3. Kompatibilitas :
Source code compatibility
Object code compatibility
4. Operation Repertoire, berapa banyak dan operasi apa saja yang disediakan dan berapa sulit operasinya.
5. Data Types, tipe / jenis data yang dapat diolah.
6. Instruction Format, panjangnya, banyaknya alamat, dsb.
7. Register, banyaknya register yang dapat digunakan.
8. Addressing, mode pengalamatan untuk operand.

CPU
Unit Pengolah Pusat (CPU) merujuk kepada perangkat keras komputer yang memahami dan melaksanakan perintah dan data dari perangkat lunak. Istilah lain, prosesor (pengolah data), sering digunakan untuk menyebut CPU. Adapun mikroprosesor adalah CPU yang diproduksi dalam sirkuit terpadu, seringkali dalam sebuah paket sirkuit terpadu-tunggal. Sejak pertengahan tahun 1970-an, mikroprosesor sirkuit terpadu-tunggal ini telah umum digunakan dan menjadi aspek penting dalam penerapan CPU.
Cara kerja CPU:
1.                  Membaca, mengkodekan dan mengeksekusi instruksi program
2.                  Mengirim data dari dan ke memori, serta dari dan ke bagian input/output.
3.                  Merespon interupsi dari luar.
4.                  Menyimpan data untuk sementara waktu menyediakan clock dan sinyal kontrol kepada               sistem.

Fungsi CPU
CPU berfungsi seperti kalkulator, hanya saja CPU jauh lebih kuat daya pemrosesannya. Fungsi utama dari CPU adalah melakukan operasi aritmatika dan logika terhadap data yang diambil dari memori atau dari informasi yang dimasukkan melalui Source
Komponen CPU terbagi menjadi beberapa macam, yaitu :
1.                  Unit Kontrol yang mampu mengatur jalannya program.
2.                  Register merupakan alat penyimpanan kecil yang mempunyai kecepatan akses cukup tinggi, yang digunakan untuk menyimpan data dan/atau instruksi yang sedang diproses.
3.                  ALU unit ini yang bertugas untuk melakukan operasi aritmetika dan operasi logika berdasar instruksi yang
4.                  CPU Interconnections adalah sisem koneksi dan bus yang menghubungkan komponen internal CPU.

Sistem BUS
Bus adalah Jalur komunikasi yang dibagi pemakai Suatu set kabel tunggal yang digunakan untuk menghubungkan berbagai subsistem. Karakteristik penting sebuah bus adalah bahwa bus merupakan media transmisi yang dapat digunakan bersama. Sistem komputer terdiri dari sejumlah bus yang berlainan yang menyediakan jalan antara dua buah komponen pada bermacam-macam tingkatan hirarki sistem komputer.
Suatu Komputer tersusun atas beberapa komponen penting seperti CPU, memori, perangkat Input/Output. setiap computer saling berhubungan membentuk kesatuan fungsi. Sistem bus adalah penghubung bagi keseluruhan komponen computer dalam menjalankan tugasnya. Transfer data antar komponen komputer sangatlah mendominasi kerja suatu computer. Data atau program yang tersimpan dalam memori dapat diakses dan dieksekusi CPU melalui perantara bus, begitu juga kita dapat melihat hasil eksekusi melalui monitor juga menggunakan system bus.

BUS SLOTS
Cara Kerja Sistem Bus
Pada sistem komputer yang lebih maju, arsitektur komputernya  akan  lebih kompleks, sehingga untuk meningkatkan  performa, digunakan beberapa buah bus. Tiap bus merupakan jalur data antara beberapa device yang berbeda. Dengan cara ini RAM, Prosesor, GPU (VGA AGP) dihubungkan oleh bus utama berkecepatan tinggi yang lebih dikenal dengan nama FSB (Front Side Bus) . Sementara perangkat lain yang lebih lambat dihubungkan oleh bus yang berkecepatan lebih rendah yang terhubung dengan bus lain yang lebih cepat sampai ke bus utama. Untuk komunikasi antar bus ini digunakan sebuah bridge.



Struktur Bus
Sebuah bus sistem terdiri dari 50 hingga 100 saluran yang terpisah. Masing-masing saluran ditandai dengan arti dan fungsi khusus. Walaupun terdapat sejumlah rancangan bus yang berlainan, fungsi saluran bus dapat diklasifikasikan menjadi tiga kelompok, yaitu saluran data, saluran alamat, dan saluran kontrol. Selain itu, terdapat pula saluran distribusi daya yang memberikan kebutuhan daya bagi modul yang terhubung.

INTERKONEKSI JENIS BUS
Saluran bus dapat dipisahkan menjadi dua tipe umum, yaitu dedicated dan multiplexed. Suatu saluran bus didicated secara permanen diberi sebuah fungsi atau subset fisik komponen-komponen komputer.
Sebagai contoh dedikasi fungsi adalah penggunaan alamat dedicated terpisah dan saluran data, yang merupakan suatu hal yang umum bagi bus. Namun, hal ini bukanlah hal yang penting. Misalnya, alamat dan informasi data dapat ditransmisikan melalui sejumlah salurah yang sama dengan menggunakan saluran address valid control. Pada awal pemindahan data, alamat ditempatkan pada bus dan address valid control diaktifkan. Pada saat ini, setiap modul memilki periode waktu tertentu untuk menyalin alamat dan menentukan apakah alamat tersebut merupakan modul beralamat. Kemudian alamat dihapus dari bus dan koneksi bus yang sama digunakan untuk transfer data pembacaan atau penulisan berikutnya. Metode penggunaan saluran yang sama untuk berbagai keperluan ini dikenal sebagai time multiplexing.
Keuntungan time multiplexing adalah memerlukan saluran yang lebih sedikit, yang menghemat ruang dan biaya. Kerugiannya adalah diperlukannya rangkaian yang lebih kompleks di dalam setiap modul. Terdapat juga penurunan kinerja yang cukup besar karena event-event tertentu yang menggunakan saluran secara bersama-sama tidak dapat berfungsi secara paralel.
Dedikasi fisik berkaitan dengan penggunaan multiple bus, yang masing-masing bus itu terhubung dengan hanya sebuah subset modul. Contoh yang umum adalah penggunaan bus I/O untuk menginterkoneksi seluruh modul I/O, kemudian bus ini dihubungkan dengan bus utama melalui sejenis modul adapter I/O. keuntungan yang utama dari dedikasi fisik adalah throughput yang tinggi, harena hanya terjadi kemacetan lalu lintas data yang kecil. Kerugiannya adalah meningkatnya ukuran dan biaya sistem.

Contoh – Contoh Bus
Banyak perusahaan yang mengembangakan bus-bus antarmuka terutama untuk perangkat peripheral. Diantara jenis bus yang beredar di pasaran saat ini adalah, PCI, ISA, USB, SCSI, FuturaBus+, FireWire, dan lain-lain. Semua memiliki keunggulan, kelemahan, harga, dan teknologi yang berbeda sehingga akan mempengaruhi jenis-jenis penggunaannya.
Bus ISA : Industri computer personal lainnya merespon perkembangan ini dengan mengadopsi standarnya sendiri, bus ISA (Industry Standar Architecture), yang pada dasarnya adalah bus PC/AT yang beroperasi pada 8,33 MHz. Keuntungannya adalah bahwa pendekatan ini tetap mempertahankan kompatibilitas dengan mesin-mesin dan kartu-kartu yang ada.
Bus PCI : Peripheral Component Interconect (PCI) adalah bus yang tidak tergantung prosesor dan berfungsi sebagai bus mezzanine atau bus peripheral. Standar PCI adalah 64 saluran data pada kecepatan 33MHz, laju transfer data 263 MB per detik atau 2,112 Gbps. Keunggulan PCI tidak hanya pada kecepatannya saja tetapi murah dengan keping yang sedikit.
Bus USB : Semua perangkat peripheral tidak efektif apabila dipasang pada bus kecepatan tinggi PCI, sedangkan banyak peralatan yang memiliki kecepatan rendah seperti keyboard, mouse, dan printer. Sebagai solusinya tujuh vendor computer (Compaq, DEC, IBM, Intel, Microsoft, NEC, dan Northen Telecom) bersama-sama meranccang bus untuk peralatan I/O berkecepatan rendah. Standar yang dihasilakan dinamakan Universal Standard Bus (USB).
Bus SCSI : Small Computer System Interface (SCSI) adalah perangkat peripheral eksternal yang dipo[ulerkan oleh macintosh pada tahun 1984. SCSI merupakan interface standar untuk drive CD-ROM, peralatan audio, hard disk, dan perangkat penyimpanan eksternal berukuan besar. SCSI menggunakan interface paralel dengan 8,16, atau 32 saluran data.
Bus P1394 / Fire Wire : Semakin pesatnya kebutuhan bus I/O berkecepatan tinggi dan semakin cepatnya prosesor saat ini yang mencapai 1 GHz, maka perlu diimbangi dengan bus berkecepatan tinggi juga. Bus SCSI dan PCI tidak dapat mencukupi kebutuhan saat ini. Sehingga dikembangkan bus performance tinggi yang dikenal dengan FireWire (P1393 standard IEEE). P1394 memiliki kelebihan dibandingkan dengan interface I/O lainnya, yaitu sangat cepat, murah, dan mudah untuk diimplementasikan. Pada kenyataan P1394 tidak hanya popular pada system computer, namun juga pada peralatan elektronik seperti pada kamera digital, VCR, dan televise. Kelebihan lain adalah penggunaan transmisi serial sehingga tidak memerlukan banyak kabel.

Sistem ALU


Arithmatic and Logic Unit (ALU)
adalah salah satu bagian/komponen dalam sistem  di dalam sistem komputer berfungsi melakukan operasi/perhitungan aritmatika dan logika (seperti penjumlahan, pengurangan dan beberapa logika lain), AlU bekerja besama-sama memori. Dimana hasil dari perhitungan di dalam ALU di simpan ke dalam memori.
Perhitungan dalam ALU menggunakan kode biner, yang merepresentasikan instruksi yang akan dieksekusi (opcode) dan data yang diolah (operand). ALU biasanya menggunakan sistem bilangan binertwo’s complement.  ALU mendapat data dari register. Kemudian data tersebut diproses dan hasilnya akan disimpan dalam register tersendiri yaitu ALU output register, sebelum disimpan dalam memori.
Pada saat sekarang ini sebuah chip/IC dapat mempunyai beberapa ALU sekaligus yang memungkinkan untuk melakukan kalkulasi secara paralel. Salah satu chip ALU yang sederhana (terdiri dari 1 buah ALU) adalah IC 74LS382/HC382ALU (TTL). IC ini terdiri dari 20 kaki dan beroperasi dengan 4×2 pin data input (pinA dan pinB) dengan 4 pin keluaran (pinF).

ALU, singkatan dari Arithmetic And Logic Unit (bahasa Indonesia: unit aritmatika dan logika), adalah salah satu bagian dalam dari sebuah mikroprosesor yang berfungsi untuk melakukan operasi hitungan aritmatikadan logika. Contoh operasi aritmatika adalah operasi penjumlahan dan pengurangan, sedangkan contoh operasi logika adalah logika AND dan OR. tugas utama dari ALU (Arithmetic And Logic Unit)adalah melakukan semua perhitungan aritmatika atau matematika yang terjadi sesuai dengan instruksi program. ALU melakukan operasi aritmatika yang lainnya. Seperti pengurangan, pengurangan, dan pembagian dilakukan dengan dasar penjumlahan. Sehingga sirkuit elektronik di ALU yang digunakan untuk melaksanakan operasi aritmatika ini disebut adder. ALU melakukan operasi arithmatika dengan dasar pertambahan, sedang operasi arithmatika yang lainnya, seperti pengurangan, perkalian, dan pembagian dilakukan dengan dasar penjumlahan. sehingga sirkuit elektronik di ALU yang digunakan untuk melaksanakan operasi arithmatika ini disebut adder. Tugas lalin dari ALU adalah melakukan keputusan dari operasi logika sesuai dengan instruksi program. Operasi logika (logical operation) meliputi perbandingan dua buah elemen logika dengan menggunakan operator logika, yaitu: sama dengan (=), tidak sama dengan (<>), kurang dari (<), kurang atau sama dengan dari (<=), lebih besar dari (>), lebih besar atau sama dengan dari (>=).

Referensi :

http://www.slideshare.net/rikahariany/arsitektur-set-instruksi-dan-cpu?from_action=save

Minggu, 09 Oktober 2016 0 komentar

STRUKTUR DASAR KOMPUTER DAN ORGANISASINYA

Struktur Dasar Komputer

Fungsi komputer didefinisikan sebagai operasi masing-masing komponen sebagai bagian dari struktur. Adapun fungsi dari masing-masing komponen dalam struktur di atas adalah sebagai berikut:


1.Input Device (Alat Masukan)
Adalah perangkat keras komputer yang berfungsi sebagai alat untuk memasukan data atau perintah ke dalam komputer. Contoh : keyboard 

2. Output Device (Alat Keluaran)
Adalah perangkat keras komputer yang berfungsi untuk menampilkan keluaran sebagai hasil pengolahan data. Keluaran dapat berupa hard-copy (ke kertas), soft-copy (ke monitor), ataupun berupa suara. 

3. I/O Ports
Bagian ini digunakan untuk menerima ataupun mengirim data ke luar sistem. Peralatan input dan output di atas terhubung melalui port ini.
4. CPU (Central Processing Unit)
CPU merupakan otak sistem komputer, dan memiliki dua bagian fungsi operasional, yaitu: ALU (Arithmetical Logical Unit) sebagai pusat pengolah data, dan CU (Control Unit) sebagai pengontrol kerja komputer. 

5. Memori
Memori terbagi menjadi dua bagian yaitu memori internal dan memori eksternal. Memori internal berupa RAM (Random Access Memory) yang berfungsi untuk menyimpan program yang kita olah untuk sementara waktu, dan ROM (Read Only Memory) yaitu memori yang hanya bisa dibaca dan berguna sebagai penyedia informasi pada saat komputer pertama kali dinyalakan. 

6. Data Bus
Adalah jalur-jalur perpindahan data antar modul dalam sistem komputer. Karena pada suatu saat tertentu masing-masing saluran hanya dapat membawa 1 bit data, maka jumlah saluran
menentukan jumlah bit yang dapat ditransfer pada suatu saat. Lebar data bus ini menentukan kinerja sistem secara keseluruhan. Sifatnya bidirectional, artinya CPU dapat membaca dan menerima data melalui data bus ini. Data bus biasanya terdiri atas 8, 16, 32, atau 64 jalur paralel. 

7. Address Bus
Digunakan untuk menandakan lokasi sumber ataupun tujuan pada proses transfer data. Pada jalur ini, CPU akan mengirimkan alamat memori yang akan ditulis atau dibaca. 

8. Control Bus
Control Bus digunakan untuk mengontrol penggunaan serta akses ke Data Bus dan Address Bus. Terdiri atas 4 sampai 10 jalur paralel.


Fungsi komputer adalah operasi masing masing komponen sebagai bagian dari struktur
Struktur Utama Komputer

  • Struktur CPU



  • Fungsi Komputer
  1. Pemindahan Data
  2. Penyimpanan Data
  3. Pengolahan Data
  4. Kontrol
  5. Pemrosesan data dari penyimpan data ke I/O 
Contoh: printing a bank statement 


1. Fungsi Operasi Pemindahan Data
Contoh : Keyboard ke Screen



2. Fungsi Operasi Penyimpanan Data
Contoh : Download File dari Internet ke Media Penyimpanan






3. Fungsi Proses dari/ ke Unit Penyimpanan
Contoh : Updating bank statement




4. Fungsi Proses dari Unit Penyimpanan ke I /O
Contoh : Printing a bank ke statement



Organisasi Komputer

      Organisasi komputer adalah bagian yang terkait erat dengan unit – unit operasional dan interkoneksi antar komponen penyusun sistem komputer dalam merealisasikan aspek arsitekturalnya. Contoh aspek organisasional adalah teknologi hardware, perangkat antarmuka, teknologi memori, dan sinyal – sinyal kontrol.
      Arsitektur komputer lebih cenderung pada kajian atribut – atribut sistem komputer yang terkait dengan seorang programmer. Contohnya, set instruksi, aritmetika yang digunakan, teknik pengalamatan, mekanisme I/O.
      Sebagai contoh apakah suatu komputer perlu memiliki instruksi pengalamatan pada memori merupakan masalah rancangan arsitektural. Apakah instruksi pengalamatan tersebut akan diimplementasikan secara langsung ataukah melalui mekanisme cache adalah kajian organisasional.

Perbedaaan Utama Organisasi Komputer:

  • Bagian yang terkait dengan erat dengan unit – unit operasional
Contoh : teknologi hardware, perangkat antarmuka, teknologi memori, sistem memori, dan sinyal – sinyal kontrol

Arsitektur Komputer

  • Atribut – atribut sistem komputer yang terkait dengan seorang programmer
Contoh : Set instruksi, aritmetika yang dipergunakan, teknik pengalamatan, mekanisme I/O
Referensi :

http://ekofitriyanto.wordpress.com/2013/10/24/pengertian-dan-perbedaan-organisasi-komputer-dengan-arsitektur-komputer/

http://id.scribd.com/doc/54889800/Pengertian-Arsitektur-Komputer-Dan-Organisasi-Komputer-TUGAS-1


http://arifpane.blogspot.com/2010/01/organisasi-komputer.html
 
;